Session	Presentation Title	Bibliographic Sources
Adult Cardiac Abstracts	Racial Disparities in Access to and Acuity of Presentation for Coronary Artery Bypass Grafting	 Vyas, Darshali A., Leo G. Eisenstein, and David S. Jones. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 2020;874-882. Enumah, Zachary Obinna, et al. Persistent racial and sex disparities in outcomes after coronary artery bypass surgery: a retrospective clinical registry review in the drug-eluting stent era. Annals of Surgery. 2020;272.4:660-667.
Adult Cardiac Abstracts	Percutaneous thrombo- vegectomy as an alternative to immediate open heart surgery for tricuspid valve endocarditis: a multi-center experience.	 Hussain ST, Witten J, Shrestha NK, Blackstone EH, Pettersson GB. Tricuspid valve endocarditis.Ann Cardiothorac Surg. 2017 May;6(3):255-261. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio- Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015;36:3075-128.
Adult Cardiac Abstracts	Unroofing of Anomalous Right Coronary Artery	Vinnakota A, et al. Anomalous Aortic Origin of the Coronary Arteries: A Novel Unroofing Technique in an Adult Cohort. Ann Thorac Surg. 2019 Mar;107(3):823-828. Karangelis D, et al. Surgical Repair of Anomalous Aortic Origin of Coronary Artery in Adults. Asian Cardiovasc Thorac Ann. 2021 Jan;29(1):51-58.
Adult Cardiac Abstracts	Sex-Related Differences in Outcomes after Proximal Aortic Surgery – Analysis of 1773 Consecutive Patients in a High-Volume Center	Chung J et al. Sex-Related Differences in Patients Undergoing Thoracic Aortic Surgery. Circulation. 2019 Feb 26;139(9):1177-1184. Boczar KE et al. Sex Differences in Thoracic Aortic Aneurysm Growth. Hypertension. 2019 Jan;73(1):190-196.
Adult Cardiac Abstracts	Surgical Risk and Postoperative Outcomes of Aortic Valve Replacement With and Without Annular Enlargement	 Hawkins RB, Beller JP, Mehaffey JH, Charles EJ, Quader MA, Rich JB, Kiser AC, Joseph M, Speir AM, Kern JA, Ailawadi G; Virginia Cardiac Services Quality Initiative. Incremental Risk of Annular Enlargement: A Multi-Institutional Cohort Study. Ann Thorac Surg. 2019 Dec;108(6):1752-1759. Peterson MD, Borger MA, Feindel CM, David TE. Aortic annular enlargement during aortic valve replacement: improving results with time. Ann Thorac Surg. 2007 Jun;83(6):2044-9.
Adult Cardiac Abstracts	Reoperative Aortic Root Replacement Following Index Stanford Type A Aortic Dissection Repair	 Chiu, P et al. Limited root repair in acute type A aortic dissection is safe but results in increased risk of reoperation. J Thorac Cardiovasc Surg. 2018;155(1):1-7.e1 Ikeno, Y et al. The fate of aortic root and aortic regurgitation after supracoronary ascending aortic replacement for acute type A aortic dissection. J Thorac Cardiovasc Surg. 2021;162(2):483-493.e1
Adult Cardiac Abstracts	Does Minimally Invasive Cardiac Surgery Mean Less Postoperative Pain?	Suri, R. M., Antiel, R. M., Burkhart, H. M., Huebner, M., Li, Z., Eton, D. T., Topilsky, T., Sarano, M. E., & Schaff, H. V. (2012). Quality of Life After Early Mitral Valve Repair Using Conventional and Robotic Approaches. The Annals of Thoracic Surgery, 93(3), 761–769. https://doi.org/https://doi.org/10.1016/j.athoracsur.2011.11.062
Adult Cardiac Abstracts	The impact of hospital teaching status on outcomes after Type A Aortic Dissection: An Analysis of over 37,000 patients	 Chikwe J, Cavallaro P, Itagaki S, Seigerman M, Diluozzo G, Adams DH. National outcomes in acute aortic dissection: influence of surgeon and institutional volume on operative mortality. Ann Thorac Surg. 2013 May;95(5):1563-9. doi: 10.1016/j.athoracsur.2013.02.039. Epub 2013 Apr 3. PMID: 23562465. Holscher CM, Dakour Aridi H, Locham SS, Hicks CW, Canner JK, Malas M, Black JH 3rd. Aortic Surgery Outcomes of Marfan Syndrome and Ehlers-Danlos Syndrome Patients at Teaching and Nonteaching Hospitals. Ann Vasc Surg. 2019 Feb;55:175-181.e3. doi: 10.1016/j.avsg.2018.07.052. Epub 2018 Oct 2. PMID: 30287287.
Adult Cardiac Abstracts	CABG with Multiarterial Grafting versus Percutaneous Coronary Intervention in Patients with Multivessel Coronary Artery Disease	Gaudino M, et al. Arterial Grafts for Coronary Bypass: A Critical Review After the Publication of ART and RADIAL. Circulation. 2019 Oct 8;140(15):1273-1284. Sousa-Uva M.2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2019 Jan 1;55(1):4-90.
Adult Cardiac Abstracts	Restoration of Life Expectancy in All Age Groups After Mitral Valve Repair for Degenerative Mitral Regurgitation	Natalie Glaser MD PhD, et al. Loss in Life Expectancy After Surgical Aortic Valve Replacement SWEDEHEART Study. JACC. 2019; 74: No. 1.
Adult Cardiac Abstracts	Robotic versus Open Mitral Valve Repair - Does Shorter Hospital Stay Lead to Lower Hospitalization Charges?	 Suri RM, et al. Improving affordability through innovation in the surgical treatment of mitral valve disease. Mayo Clin Proc 2013;88:1075–84. Wang A, et al. Robotic Mitral Valve Repair in Older Individuals: An Analysis of The Society of Thoracic Surgeons Database. Ann Thorac Surg 2018;106:1388–93.

Cardiopulmonary Failure Abstracts Cardiopulmonary Failure	Trans-Valvular Unloading Protects Against Both Pre and Post Reperfusion Injury in Preclinical Models of Acute Myocardial Infarction The HeartMate 3 Left	Kapur, N.K., et al., Mechanical Pre-Conditioning With Acute Circulatory Support Before Reperfusion Limits Infarct Size in Acute Myocardial Infarction. JACC Heart Fail, 2015. 3(11): p. 873-82. Esposito, M.L., et al., Left Ventricular Unloading Before Reperfusion Promotes Functional Recovery After Acute Myocardial Infarction. J Am Coll Cardiol, 2018. 72(5): p. 501-514. Loyaga-Rendon RY, Jani M, Jovinge SV. Worse Post-Transplant Survival on Patients Bridged
Abstracts	Ventricular Assist Device as a Strategy to Bridge to Transplant: Outcomes in Over 1300 Patients	With LVAD in the New Heart Transplant Allocation System?. JACC Heart Fail. 2021;9(7):533. doi:10.1016/j.jchf.2021.04.007 Srinivasan AJ, Seese L, Mathier MA, Hickey G, Lui C, Kilic A. Recent Changes in Durable Left Ventricular Assist Device Bridging to Heart Transplantation [published online ahead of print, 2021 Mar 29]. ASAIO J. 2021;10.1097/MAT.00000000001436. doi:10.1097/MAT.00000000001436
Cardiopulmonary Failure Abstracts	100 Total Artificial Hearts: Patient Characteristics and Clinical Outcomes at a High-Volume Transplant Center	Arabia, Francisco A., Ryan S. Cantor, and Devin A. Koehl. "INTERMACS report on the total artificial heart." J Heart Lung Transplant 37 (2018): 1305-1313. Kirsch, Matthias EW, et al. "SynCardia temporary total artificial heart as bridge to transplantation: current results at la pitié hospital." The Annals of thoracic surgery 95.5 (2013): 1640-1646.
Cardiopulmonary Failure Abstracts	Racial Disparities in COVID Mortality Persist in Heart Transplant Recipients: An Analysis of the Organ Procurement and Transplantation Network Database	 Genuardi MV, Moss N, Najjar SS, et al. Coronavirus disease 2019 in heart transplant recipients: Risk factors, immunosuppression, and outcomes [published online ahead of print, 2021 May 19]. J Heart Lung Transplant. 2021;S1053-2498(21)02319-6. doi:10.1016/j.healun.2021.05.006 Karmakar M, Lantz PM, Tipirneni R. Association of Social and Demographic Factors With COVID-19 Incidence and Death Rates in the US. JAMA Netw Open. 2021;4(1):e2036462. Published 2021 Jan 4. doi:10.1001/jamanetworkopen.2020.36462 Mackey K, Ayers CK, Kondo KK, et al. Racial and Ethnic Disparities in COVID-19-Related Infections, Hospitalizations, and Deaths : A Systematic Review. Ann Intern Med. 2021;174(3):362-373. doi:10.7326/M20-6306 Millett GA, Jones AT, Benkeser D, et al. Assessing differential impacts of COVID-19 on black communities. Ann Epidemiol. 2020;47:37-44. doi:10.1016/j.annepidem.2020.05.003
Cardiopulmonary Failure Abstracts	Exploring the Timing of Systemic Heparinization and Hemostatic Complications in Pediatric Extracorporeal Membrane Oxygenation Failed to Wean from Cardiopulmonary Bypass	 Dalton HJ, Reeder R, Garcia-Filion P, Holubkov R, Berg RA, Zuppa A, et al. Factors Associated with Bleeding and Thrombosis in Children Receiving Extracorporeal Membrane Oxygenation. Am J Respir Crit Care Med 2017; 196(6):762-771. Giglia TM, Massicotte MP, Tweddell JS, Barst RJ, Bauman M, Erickson CC, et al. Prevention and treatment of thrombosis in pediatric and congenital heart disease: a scientific statement from the American Heart Association. Circulation 2013; 128(24):2622-2703.
Cardiopulmonary Failure Abstracts	To Cannulate Or Not To Cannulate? Extracorporeal Membrane Oxygenation (ECMO) In Immunosuppressed Patients With COVID-19 Is High Risk But Not Futile, A Multicenter Study From The ORACLE Group	 Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2018;378(21):1965-1975. doi:10.1056/NEJMoa1800385 Schmidt M, Hajage D, Lebreton G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. The Lancet Respiratory Medicine. 2020;Volume 8(Issue 11):1121 - 1131. Schmidt M, Bailey M, Sheldrake J, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am J Respir Crit Care Med. Jun 1 2014;189(11):1374-82. doi:10.1164/rccm.201311-2023OC Shekar K, Badulak J, Peek G, et al. Extracorporeal Life Support Organization Coronavirus Disease 2019 Interim Guidelines: A Consensus Document from an International Group of Interdisciplinary Extracorporeal Membrane Oxygenation Providers. Asaio j. Jul 2020;66(7):707-721. doi:10.1097/mat.00000000001193
Cardiopulmonary Failure Abstracts	Utilization of Venoarterial Extracorporeal Life Support for Acute Pulmonary Embolism Demonstrates Favorable Outcomes	 Weinberg A, Tapson VF, Ramzy D. Massive Pulmonary Embolism: Extracorporeal Membrane Oxygenation and Surgical Pulmonary Embolectomy. Semin Respir Crit Care Med. 2017 Feb;38(1):66-72. doi: 10.1055/s-0036-1597559. Epub 2017 Feb 16. Review. PubMed PMID: 28208200. Pasrija C, Kronfli A, George P, Raithel M, Boulos F, Herr DL, Gammie JS, Pham SM, Griffith BP, Kon ZN. Utilization of Veno-Arterial Extracorporeal Membrane Oxygenation for Massive Pulmonary Embolism. Ann Thorac Surg. 2018 Feb;105(2):498-504. doi: 10.1016/j.athoracsur.2017.08.033. Epub 2017 Nov 23.PubMed PMID: 29174781

Cardiopulmonary Failure Abstracts	Appraisal Of Donation After Circulatory Death: How Far Could We Expand The Heart Donor Pool?	Thuong M, Ruiz A, Evrard P, Kuiper M, Boffa C, Akhtar MZ, et al. New classification of donation after circulatory death donors definitions and terminology. Transpl Int 2016;29:749–59. doi:10.1111/TRI.12776. Shudo Y, Benjamin-Addy R, Koyano T, Hiesinger W, MacArthur J, Woo Y. Donors after circulatory death heart trial. Futur Cardiol 2021;17:11–7. doi:10.2217/FCA-2020-0070.
Cardiopulmonary Failure Abstracts	Progression of Aortic Valve Insufficiency During Fully Magnetically Levitated Centrifugal Versus Axial Flow Left Ventricular Assist Device (LVAD) Support	 Mehra MR, Naka Y, Uriel N, et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. New England Journal of Medicine. 2016;376(5):440-450. Truby LK, Garan AR, Givens RC, et al. Aortic Insufficiency During Contemporary Left Ventricular Assist Device Support: Analysis of the INTERMACS Registry. JACC Heart failure. 2018;6(11):951-960. doi:10.1016/j.jchf.2018.07.012
Cardiopulmonary Failure Abstracts	Cardiovascular Mechanism of Donor Brain Death and Heart Recipient Survival	 Farr, M. et al. Potential for donation after circulatory death heart transplantation in the United States: Retrospective analysis of a limited UNOS dataset. Am. J. Transplant. 20, 525– 529 (2020). Khush, K. K. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-fifth Adult Heart Transplantation Report—2018; Focus Theme: Multiorgan Transplantation. J. Heart Lung Transplant. 37, 1155–1168 (2018). Messer, S. et al. A 5-year single-center early experience of heart transplantation from donation after circulatory-determined death donors. J. Heart Lung Transplant. 39, 1463– 1475 (2020). Quader, M., Toldo, S., Chen, Q., Hundley, G. & Kasirajan, V. Heart transplantation from donation after circulatory death donors: Present and future. J. Card. Surg. 35, 875–885 (2020).
Cardiopulmonary Failure Abstracts	Prolonged Allograft Ischemia Increases Short- Term Complications Among High and Low Volume Centers in Lung Transplantation	1) Chambers DC, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Lung And Heart-Lung Transplantation Report-2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1047-59. 2) Hayes D, Jr., et al. Lung Transplant Center Volume Ameliorates Adverse Influence of Prolonged Ischemic Time on Mortality. Am J Transplant. 2017;17(1):218-26.
Congenital Abstracts	Variation in Patient and Procedural Characteristics Across Hospitals: An analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database (STS CHSD)	 Pasquali SK, Thibault D, O'Brien SM, Jacobs JP, Gaynor JW, Romano JC, Gaies M, Hill KD, Jacobs ML, Shahian DM, Backer CL, Mayer JE. National Variation in Congenital Heart Surgery Outcomes. Circulation. 2020 Oct 6;142(14):1351-1360. doi: 10.1161/CIRCULATIONAHA.120.046962. Epub 2020 Oct 5. PMID: 33017214; PMCID: PMC7539149. Pasquali SK, Jacobs ML, O'Brien SM, He X, Gaynor JW, Gaies MG, Peterson ED, Hirsch- Romano JC, Mayer JE, Jacobs JP. Impact of Patient Characteristics on Hospital-Level Outcomes Assessment in Congenital Heart Surgery. Ann Thorac Surg. 2015 Sep;100(3):1071- 6; discussion 1077. doi: 10.1016/j.athoracsur.2015.05.101. Epub 2015 Aug 3. PMID: 26245503; PMCID: PMC4686337.
Congenital Abstracts	Malnutrition is not Associated with Poor Surgical Outcomes in Children with Congenital Heart Disease Enrolled in a Comprehensive Perioperative Enhanced Recovery Program	 Puller S, Kumar SR, Roy N, Mahle WT, Romano JC, Nelson JS, Hammel JM, Imamura M, Zhang H, Fremes SE, McHugh-Grant S, Nicolson SC; AATS Cardiac Clinical Practice Standards Committee Members. The American Association for Thoracic Surgery Congenital Cardiac Surgery Working Group 2021 consensus document on a comprehensive perioperative approach to enhanced recovery after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2021 May 1:S0022-5223(21)00757-1. doi: 10.1016/j.jtcvs.2021.04.072. Epub ahead of print. PMID: 34059337. Ross, F., Latham, G., Joffe, D., Richards, M., et al. Preoperative malnutrition is associated with increased mortality and adverse outcomes after paediatric cardiac surgery. Cardiology in the Young, 27(9), 1716-1725. doi:10.1017/S1047951117001068
Congenital Abstracts	Evolution of Pulmonary Valve Management During Complete Repair of Tetralogy of Fallot: a 14- year Experience	Mouws EMJP, et al. Tetralogy of Fallot in the Current Era. Sem Thor Card Surg. 2018; 31:496-504. Lozano-Balseiro, M, et al. Valve-Sparing Tetralogy of Fallot Repair With Intraoperative Dilation of the Pulmonary Valve: Mid-Term Results. Sem Thor Card Surg. 2019; 31:828-834.
Congenital Abstracts	Mitral Valve Operation after Tetralogy of Fallot Repair: Early and Late Outcomes	 Hövels-Gürich, H. H., Konrad, K., Skorzenski, D., et al. Long-term behavior and quality of life after corrective cardiac surgery in infancy for tetralogy of Fallot or ventricular septal defect. Pediatr. Cardiol. 28, 346–354 (2007). Dłużniewska, N., Podolec, P., Skubera, M., et al. Long-term follow-up in adults after tetralogy of Fallot repair. Cardiovasc. Ultrasound 16, 28 (2018).
Congenital Abstracts	Comparison of Intraoperative and Pre- Discharge Technical Performance Score by Anatomic Residua in Congenital Cardiac Surgery	 Nathan M, et al. Technical Performance Score Predicts Resource Utilization in Congenital Cardiac Procedures. J Am Coll Cardiol. 2016;67:2696-8. Karamichalis JM, et al. Technical performance scores in congenital cardiac operations: a quality assessment initiative. Ann Thorac Surg. 2012;94:1317-23.

	– Analysis of >6000	
Congenital Abstracts	Consecutive Discharges Intraoperative Technical Performance Score Predicts Predischarge Transplant- Free Survival and Reinterventions Following Congenital Heart Surgery – Analysis of Consecutive Discharges for 9 Years	 Michalowski AK, et al. Technical Performance Score: A Predictor of Outcomes After the Norwood Procedure [published online ahead of print, 2020 Sep 25]. Ann Thorac Surg. 2020;S0003-4975(20)31549-6. Nathan M, et al. Technical Performance Scores are strongly associated with early mortality, postoperative adverse events, and intensive care unit length of stay-analysis of consecutive discharges for 2 years. J Thorac Cardiovasc Surg. 2014;147(1):389-396.e3.
Congenital Abstracts	Optimal High Flow Regional Cerebral Perfusion in Aortic Arch Repair from the Perspective of Postoperative Renal Function	Sughimoto K et al. Markers of peripheral perfusion during high-flow regional cerebral perfusion for aortic arch repair. J Thorac Cardiovasc Surg. 2018 Dec;156(6):2251-2257. Miyaji K et al. Regional high-flow cerebral perfusion improves both cerebral and somatic tissue oxygenation in aortic arch repair. Ann Thorac Surg. 2010 Aug;90(2):593-9.
General Thoracic Abstracts	Transbronchial Microwave Ablation of Lung Nodules in the Hybrid Operating Room – Mid-Term Follow Up of a Novel Technique	Chan JWY, Lau RWH, Ngai JCL, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases. Transl Lung Cancer Res. 2021;10(4):1608-1622. Jiang N, Zhang L, Hao Y, et al. Combination of electromagnetic navigation bronchoscopy- guided microwave ablation and thoracoscopic resection: An alternative for treatment of multiple pulmonary nodules. Thorac Cancer. 2020;11(6):1728-1733.
General Thoracic Abstracts	Sealing Effectiveness Of A Novel NHS-POx Based Patch: Aerostatic Experiments In A Dynamic Ex-Vivo Porcine Lung Model	 Attaar A, Tam V, Nason KS. Risk Factors for Prolonged Air Leak After Pulmonary Resection: A Systematic Review and Meta-analysis. Ann Surg. 2020 May;271(5):834-844. Brunelli A, Bölükbas S, Falcoz PE, Hansen H, Jimenez MF, Lardinois D, Scarci M, Viti A, Walker I, Warren T. Exploring consensus for the optimal sealant use to prevent air leak following lung surgery: a modified Delphi survey from The European Society of Thoracic Surgeons. Eur J Cardiothorac Surg. 2021 Jun 14;59(6):1265-1271. Boerman MA, Roozen E, Sánchez-Fernández MJ, Keereweer AR, Félix Lanao RP, Bender JCME, Hoogenboom R, Leeuwenburgh SC, Jansen JA, Van Goor H, Van Hest JCM. Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s. Biomacromolecules. 2017 Aug 14;18(8):2529-2538.
General Thoracic Abstracts	Impact of Gastric Ischemic Preconditioning on Quantitative Assessment of Gastric Conduit Perfusion during Esophagectomy: Propensity-score Matching Study	 Pham TH, Melton SD, McLaren PJ, et al. Laparoscopic ischemic conditioning of the stomach increases neovascularization of the gastric conduit in patients undergoing esophagectomy for cancer. J Surg Oncol. 2017;116(3):391-397. doi:10.1002/jso.24668 Michalinos A, Antoniou SA, Ntourakis D, et al. Gastric ischemic preconditioning may reduce the incidence and severity of anastomotic leakage after oesophagectomy: a systematic review and meta-analysis. Dis Esophagus. 2020;33(10):doaa010. doi:10.1093/dote/doaa010 Kamarajah SK, Boyle C, Bundred JR, Tan BH. Critical appraisal of gastric conduit ischaemic conditioning (GIC) prior to oesophagectomy: A systematic review and meta-analysis. Int J Surg. 2020;77:77-82. doi:10.1016/j.ijsu.2020.03.020
On Demand CT Education/Wellness/Quality	Global Makeup of Cardiothoracic Surgeons as Represented by Our Major Societies and Associations	 Ikonomidis JS, et al. The Society of Thoracic Surgeons Thoracic Surgery Practice and Access Task Force-2019 Workforce Report. The Annals of Thoracic Surgery. 2020;110(3):1082-1090. doi:10.1016/j.athoracsur.2020.04.004. Shemin RJ, et al. Thoracic Surgery Workforce: Report of STS/AATS Thoracic Surgery Practice and Access Task Force-Snapshot 2010. J Thorac Cardiovasc Surg. 2012;143(1):39– 46.e6. doi:10.1016/j.jtcvs.2011.10.022.
On Demand CT Education/Wellness/Quality	Assessment of Financial Conflicts of Interest in Cardiothoracic Robotic Surgery Studies	 Friedman LS, Richter ED. Relationship between conflicts of interest and research results. J Gen Intern Med. 2004 Jan;19(1):51-6. Lexchin J, et al. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. BMJ. 2003;326(7400):1167-1170.
Prolonged Periods of Antegrade Cerebral Perfusion Are Safe During Elective Arch Surgery: A Report from the ARCH Database	Prolonged Periods of Antegrade Cerebral Perfusion Are Safe During Elective Arch Surgery: A Report from the ARCH Database	 Lau C, Gaudino M, Iannacone EM, Gambardella I, Munjal M, Ohmes LB, Degner BC, Girardi LN. Retrograde Cerebral Perfusion Is Effective for Prolonged Circulatory Arrest in Arch Aneurysm Repair. Ann Thorac Surg. 2018 Feb;105(2):491-497. doi: 10.1016/j.athoracsur.2017.07.018. Epub 2017 Nov 1. PMID: 29100641. El-Sayed Ahmad A, Papadopoulos N, Risteski P, Hack T, Ay M, Moritz A, Zierer A. Is More than One Hour of Selective Antegrade Cerebral Perfusion in Moderate-to-Mild Systemic Hypothermic Circulatory Arrest for Surgery of Acute Type A Aortic Dissection Safe? Thorac Cardiovasc Surg. 2018 Apr;66(3):215-221. doi: 10.1055/s-0037-1604451. Epub 2017 Aug 6.
Sublobar Resection and Occult Nodal Disease	Is there a Role for Completion Lobectomy for Clinical Stage Ia Non-small	PMID: 28780765. Omasa M, Date H, Takamochi K, Suzuki K, Miyata Y, Okada M. Completion lobectomy after radical segmentectomy for pulmonary malignancies. Asian Cardiovasc Thorac Ann. 2016 Jun;24(5):450-4. doi: 10.1177/0218492316648863. PMID: 27207503.

	Cell Lung Cancer Patients with Occult Lymph Node Disease?	Moon Y, Lee KY, Park JK. Prognosis After Sublobar Resection of Small-sized Non-small Cell Lung Cancer with Visceral Pleural or Lymphovascular Invasion. World J Surg. 2017 Nov;41(11):2769-2777. doi: 10.1007/s00268-017-4075-7. PMID: 28597091.
Sublobar Resection and Occult Nodal Disease	Lobar Versus Sublobar Resection in Clinical Stage IA Non-Small Cell Lung Cancer Patients with Occult N2 Disease	Speicher PJ, Gu L, Gulack BC, et al. Sublobar Resection for Clinical Stage IA Non-small-cell Lung Cancer in the United States. Clin Lung Cancer. 2016;17(1):47-55. doi:10.1016/j.cllc.2015.07.005; Berfield KS, Wood DE. Sublobar resection for stage IA non- small cell lung cancer. J Thorac Dis. 2017;9(Suppl 3):S208-S210. doi:10.21037/jtd.2017.03.135
Surgical Videos	Modification of closure of the Aortotomy for "Y" Incision/Rectangular Patch to Enlarge the Aortic Annulus by 3-4 Valve Sizes	 Yang B, Naeem A. A Y Incision and Rectangular Patch to Enlarge the Aortic Annulus by Three Valve Sizes. Ann Thorac Surg. 2021 Aug;112(2):e139-e141. Yang B. A novel simple technique to enlarge the aortic annulus by two valve sizes. JTCVS Tech. 2021 Feb;5:13-16.
Surgical Videos	Robotic Enucleation of an Intrapulmonary Solitary Fibrous Tumor Encasing the Pulmonary Artery	Rao N, Colby TV, Falconieri G, Cohen H, Moran CA, Suster S. Intrapulmonary solitary fibrous tumors: clinicopathologic and immunohistochemical study of 24 cases. Am J Surg Pathol. 2013 Feb;37(2):155-66. Arsalane A, Zidane A, Fenane H, Azami A, Essadi I, Raissi A, Lalya I, Msougar Y. Solitary Fibrous Tumor: Case Report of Intrapulmonary Location. Case Rep Oncol Med. 2018 Dec
Surgical Videos	Biventricular Repair of Pulmonary Atresia with Intact Ventricular Septum, Hypoplastic Right Ventricle, and Ebstein's Anomaly A Surgical Challenge	2;2018:5745471 Yasuhiro Kotani, Shingo Kasahara, Yasuhiro Fujii, Takahiro Eitoku, Kenji Baba, Shin-ichi Otsuki, Yosuke Kuroko, Sadahiko Arai, Shunji Sano, A staged decompression of right ventricle allows growth of right ventricle and subsequent biventricular repair in patients with pulmonary atresia and intact ventricular septum, European Journal of Cardio-Thoracic Surgery, Volume 50, Issue 2, August 2016, Pages 298–303, https://doi.org/10.1093/ejcts/ezw124 Huang, SC., Ishino, K., Kasahara, S., Yoshizumi, K., Kotani, Y., & Sano, S. (2009). The potential of disproportionate growth of tricuspid valve after decompression of the right ventricle in patients with pulmonary atresia and intact ventricular septa. The Journal of Thoracic and Cardiovascular Surgery, 138(5), 1160–1166. https://doi.org/10.1016/j.jtcvs.2009.05.015
Surgical Videos	Totally 3D-Endoscopic Repair of Two-Chambered Right Ventricle	Ahmad K. Darwazah, et al. Surgical Management of Double-Chambered Right Ventricle in Adults.Texas Heart Institute Journal.2011;38:301-304. Said SM, et al. Outcomes of surgical repair of double-chambered right ventricle. Ann Thorac
Surgical Videos	Robotic-Assisted Repair of Morgagni Hernia Using Pre- Peritoneal Mesh	 Surg. 2012;93:197–200. 1. Simson JN, Eckstein HB. Congenital diaphragmatic hernia: a 20 year experience. Br J Surg. 1985 Sep;72(9):733-6. 2. Geraldson, C, Wei, B. "Diaphragmatic Hernias". Thoracic Surgery. Springer, 2020, pp. 697-705.
Surgical Videos	Neonatal Aortic Arch Reconstruction Using Non- Valved Femoral Vein Homograft: An Alternative to Conventional Arch Reconstruction for High- Risk Neonates	Desai MH, et al. Modified Yasui Operation Using Cryopreserved Femoral Vein Homograft. Ann Thorac Surg. 2020;110:e147-9. Seery TJ, et al. Femoral Vein Homograft for Neoaortic Reconstruction in the Norwood Stage 1 Operation: A Follow-Up Study. J Thorac Cardiovasc Surg. 2013;146:550-556.
Surgical Videos	Aortic Valve-Sparing Reconstruction of Marfanoid-Type Bicuspid Aortic Root Aneurysm	 Rankin JS, et al. Aortic Valve Repair Using Geometric Ring Annuloplasty. Operative Techniques in Thoracic and Cardiovascular Surgery. 2021;https://doi.org/10.1053/j.optechstcvs.2020.11.008. Rankin JS, et al. Bicuspid aortic valve repair using geometric ring annuloplasty: A first-in- humans pilot trial. JTCVS Techniques. 2020;1:18-25.
Surgical Videos	Lung Base-Flipped Approach for a Robotic Subsegmentectomy of the Right Posterior-Basilar Segment (S10b)	 Eguchi T, et al. Technical advances in segmentectomy for lung cancer: A minimally invasive strategy for deep, small, and impalpable tumors. Cancers. 2021;13:3137 Nakazawa S, Eguchi T, et al. Right upper lobe segmentectomy guided by simplified anatomic models. JTCVS Tech. 2020;4:288-297 Eguchi T, et al. Three-dimensional imaging navigation during a lung segmentectomy using an iPad. Eur J Cardiothorac Surg. 2012;41:893-897
Surgical Videos	Extra-anatomic Bypass after TEVAR Complication in Interrupted Arch Syndrome	 Native and prosthetic graft infections of the thoracic aorta: surgical management. Rustum S, Beckmann E, Martens A, Krüger H, Arar M, Kaufeld T, Haverich A, Shrestha ML.Eur J Cardiothorac Surg. 2021 Mar 30:ezab143. doi: 10.1093/ejcts/ezab143. Bacteriophage Therapy for Critical Infections Related to Cardiothoracic Surgery. Rubalskii E, Ruemke S, Salmoukas C, Boyle EC, Warnecke G, Tudorache I, Shrestha M, Schmitto JD, Martens A, Rojas SV, Ziesing S, Bochkareva S, Kuehn C, Haverich A.Antibiotics

Surgical Videos	Teaching Posterior Approach for Robotic- Assisted Right Upper Lobectomy	 -Chen et al. Techniques for lung surgery: a review of robotic lobectomy. Expert Rev Respir Med. 2018;12(4):315-322. -Ramadan et al. Tips and tricks to decrease the duration of operation in robotic surgery for lung cancer. J Vis Surg. 2017; 13;3:11.
Surgical Videos	Robotic Resection of Pulmonary Sequestration with Fluorescence Image- Guidance	Matsuoka S, Eguchi T, Takeda T, Miura K, Hamanaka K, Shimizu K. Three-dimensional computed tomography and indocyanine green-guided technique for pulmonary sequestration surgery.Gen Thorac Cardiovasc Surg. 2021 Mar;69(3):621-624. Motohashi Y, Kato T, Aragaki M, Fujiwara-Kuroda A, Hida Y, Wakasa S, Kaga K. Intraoperative real-time hemodynamics in intralobar pulmonary sequestration using indocyanine green and near-infrared thoracoscopy.Gen Thorac Cardiovasc Surg. 2021 Feb;69(2):383-387. doi: 10.1007/s11748-020-01459-3. Epub 2020 Aug 6.
Surgical Videos	Minimally Invasive Management of Dysphagia Lusoria secondary to Aberrant Right Subclavian Artery	Rogers, A D et al. "Dysphagia lusoria: a case of an aberrant right subclavian artery and a bicarotid trunk." ISRN surgery vol. 2011 (2011): 819295. doi:10.5402/2011/819295 Fukuhara, Shinichi et al. "A novel method for the treatment of dysphagia lusoria due to aberrant right subclavian artery." Interactive cardiovascular and thoracic surgery vol. 16,3 (2013): 408-10. doi:10.1093/icvts/ivs51
Surgical Videos	Infrared Thoracoscopic Pulmonary Segmentectomy For An Unpalpable Tumor With Intravenous Indocyanine Green Administration Using Preoperative Simulation	 Misaki N, et al. A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg 2009; 138: 613-618. Misaki N, et al. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system. J Thorac Cardiovasc Surg 2010; 140: 752-756.
Surgical Videos	Laryngotracheal Resection and Reconstruction Following Neoadjuvant BRAF Inhibition with Dabrafenib/Trametinib for Anaplastic Thyroid Carcinoma.	 [1] Glaser SM, et al. Anaplastic thyroid cancer: Prognostic factors, patterns of care, and overall survival. Head & Neck. 2016;38:E2083–90. [2] Lungulescu C, et al. Durable response in a case of metastatic anaplastic thyroid cancer using a combination of tyrosine kinase inhibitors and a check point inhibitor. Acta Endocrinol (Buchar). 2020;16:236–41. [3] Wang JR, et al. Complete Surgical Resection Following Neoadjuvant Dabrafenib Plus Trametinib in BRAFV600E-Mutated Anaplastic Thyroid Carcinoma. Thyroid. 2019;29:1036–43.
Surgical Videos	Robot Assisted Right VATS Truncal Vagotomy for Marginal Ulcers Following Gastric Bypass Surgery	 Bonanno, A., Tieu, B., Dewey, E. et al. Thoracoscopic truncal vagotomy versus surgical revision of the gastrojejunal anastomosis for recalcitrant marginal ulcers. Surg Endosc 33, 607–611 (2019). https://doi.org/10.1007/s00464-018-6386-7 Brungardt, J., M.D., Tracy, B., M.D., McBride, K., M.D., Standiford, D., P.AC., & Bailey, B. M., M.D. (2018). Right robotic-assisted transthoracic truncal vagotomy for marginal ulcer disease after gastric bypass surgery. The American Surgeon, 84(8), E340-E342. Retrieved from https://www.proquest.com/scholarly-journals/right-robotic-assisted-transthoracic- truncal/docview/2114612334/se-2?accountid=10639 https://www.ctsnet.org/article/right-thoracoscopic-vats-truncal-vagotomy-marginal- ulcers-after-gastric-bypass-surgery
Surgical Videos	Preoperative Imaging and Surgical Technique: How to Complete a Robotic- Assisted VATS Complex Basilar Segmentectomy	 Handa Y, et al. Surgical Outcomes of Complex Versus Simple Segmentectomy for Stage I Non-Small Cell Lung Cancer. Ann Thorac Surg. 2019 Apr;107(4):1032-1039. Handa Y, et al. Oncologic Outcomes of Complex Segmentectomy: A Multicenter Propensity Score-Matched Analysis. Ann Thorac Surg. 2021 Mar; 111(3):1044-1051.
Surgical Videos	Left Paratracheal Paraganglioma Robotic Resection	 Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, et al. Current management of pheochromocytoma/paraganglioma: A guide for the practicing clinician in the era of precision medicine. Cancers. 2019;11(10):1–27. Wald O, Shapira OM, Murar A, Izhar U. Paraganglioma of the mediastinum: Challenges in diagnosis and surgical management. Journal of Cardiothoracic Surgery. 2010;5(1):2–4. Lamy AL, Fradet GJ, Luoma A, Nelems B. Anterior and middle mediastinum paraganglioma: Complete resection is the treatment of choice. The Annals of Thoracic Surgery. 1994;57(1):249–52. Rakovich G, Ferraro P, Therasse E, Duranceau A. Preoperative embolization in the management of a mediastinal paraganglioma. Annals of Thoracic Surgery. 2001;72(2):601–3

Adult Cardiac Top Abstracts	J. Maxwell Chamberlain Memorial Paper for Adult Cardiac Surgery: Does total arterial coronary artery bypass grafting provide a significant long-term survival (20 years) benefit compared to Single Internal Mammary Artery and Radial artery.	 Loop FD, Lytle BW, Cosgrove DM, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 1986;314:1-6. Lytle BW, Loop FD, Thurer RL, Groves LK, Taylor PC, Cosgrove DM. Isolated left anterior descending coronary atherosclerosis: long-term comparison of internal mammary artery and venous autografts. Circulation 1980;61:869–74. Cameron A, Davis KB, Green G, Schaff HV. Coronary bypass surgery with internal-thoracic-artery grafts — effects on survival over a 15-year period. N Engl J Med 1996;334:216-219. Green GE. Internal mammary artery-to-coronary artery anastomosis: three-year experience with 165 patients. Ann Thorac Surg 1972;14:260–71.
		Lytle BW, Blackstone EH, Loop FD, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 1999;117:855-72.
Adult Cardiac Top Abstracts	Richard E. Clark Memorial Paper for Adult Cardiac Surgery: Benchmarking Outcomes of Surgical Aortic Valve Replacement for Aortic Stenosis in Patients with Bicuspid Aortic Valves: An Analysis of the Society of Thoracic Surgeons Adult Cardiac Surgery Database	Yoon SH, Lefevre T, Ahn JM et al. Transcatheter Aortic Valve Replacement With Early- and New-Generation Devices in Bicuspid Aortic Valve Stenosis. J Am Coll Cardiol 2016;68:1195- 1205. Elbadawi A, Saad M, Elgendy IY et al. Temporal Trends and Outcomes of Transcatheter Versus Surgical Aortic Valve Replacement for Bicuspid Aortic Valve Stenosis. JACC Cardiovasc Interv 2019;12:1811-1822
Adult Cardiac Top Abstracts	Patterns of Presentation and Operative Outcomes of Acute Type A Aortic Dissection During the COVID-19 Pandemic: Analysis of the STS Adult Cardiac Surgery Database (ACSD)	Shinichi Fukuhara, MD, Hao Tang, MD, Karen M. Kim, MD, MSc, et. al. Type A Aortic Dissection During COVID-19 Pandemic: Report From Tertiary Aortic Centers in the United States and China. Semin Thorac Cardiovasc Surg. 2021 Summer; 33(2): 303–312. Xinyu Yu. Management of acute aortic dissection during the COVID-19 pandemic: Experience from an epicenter in Wuhan, China. J Vasc Surg. 2020 Aug; 72(2): 754–755.
Adult Cardiac Top Abstracts	PROACT Mitral: A Randomized Controlled Trial of Anticoagulation Regimen After On-X Mechanical Mitral Valve Replacement	 References: 1. Puskas, JD, Gerdisch M, Nichols D, et al. Anticoagulation and antiplatelet strategies after on-x mechanical aortic valve replacement. J Am Coll Cardiol 2018;71:2717-26. 2. Murana G, Alfonsi J, Savini C, et al. On-X mitral valve replacement: a single-centre experience in 318 patients. Interact CardioVasc Thorac Surg 2018;27(6):836-841. 3. Akins CW, Miller DC, Turina MI, et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. J Thorac Cardiovasc Surg 2008;135:732-8. 4. Rosendaal FR, Cannegieter SC, van der Meer FJM, Briet E. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemostasis 1993; 69:236-9.
Cardiopulmonary Failure Top Abstracts	J. Maxwell Chamberlain Memorial Paper for Cardiopulmonary Failure: Do Weekends, Holidays, and Thoracic Conferences Impact Acceptance of Heart Transplant Offers?	 Abdelwahab Elhamahmi D, et al. Kidney Discard Rates in the United States During American Transplant Congress Meetings. Transplant Direct. 2018;5(1):e412. Cohen JB, et al. Kidney allograft offers: Predictors of turndown and the impact of late organ acceptance on allograft survival. Am J Transplant. 2018;18(2):391-401. Mohan S, et al. The weekend effect alters the procurement and discard rates of deceased donor kidneys in the United States. Kidney Int. 2016;90(1):157-163.
Cardiopulmonary Failure Top Abstracts	Richard E. Clark Memorial Paper for Cardiopulmonary Failure: Advancing Quality Metrics for Durable Left Ventricular Assist Device Implant: An Analysis of the Society of Thoracic Surgeons Intermacs Database	Cowger JA, Stulak JM, Shah P, Dardas TF, Pagani FD, Dunlay SM, et al. Impact of Center Left Ventricular Assist Device Volume on Outcomes After Implantation: An INTERMACS Analysis. JACC Heart Fail. 2017 Oct;5(10):691–9. Krim SR, Vivo RP, Campbell P, Estep JD, Fonarow GC, Naftel DC, et al. Regional differences in use and outcomes of left ventricular assist devices: Insights from the Interagency Registry for Mechanically Assisted Circulatory Support Registry [Internet]. Vol. 34, The Journal of Heart and Lung Transplantation. 2015. p. 912–20. Available from: http://dx.doi.org/10.1016/j.healun.2015.01.007

Condianaly 5 11 5	Hand Trace Includes	Channell Charter and Describer Africa Charles and the state of the
Cardiopulmonary Failure Top	Heart Transplants From	Chew, H.C., et al., Outcomes of Donation After Circulatory Death Heart Transplantation in
Abstracts	Donation After Circulatory Death Donors in Australia:	Australia. Journal of the American College of Cardiology, 2019. 73: pp 1447 – 59.
	Outcomes And Lessons	American Conege of Cardiology, 2013. 73. pp 1447 – 33.
	Learned - Comparing The	Iyer, A., et al., Normothermic ex vivo perfusion provides superior organ preservation and
	Early Vs Recent Experience	enables viability
		assessment of hearts from DCD donors. Am J Transplant, 2015. 15(2): p. 371-80.
Cardiopulmonary Failure Top	Association Between Case	Patel, S. et al. National Landscape of Unplanned 30-Day Readmissions in Patients With Left
Abstracts	Volume, Failure to Rescue,	Ventricular Assist Device Implantation. Am. J. Cardiol. 122, 261–267 (2018).
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and Mortality in Patients	
	Undergoing Left Ventricular	Kurlansky, P. A. et al. Failure to Rescue: A New Society of Thoracic Surgeons Quality Metric
	Assist Device Implantation	for Cardiac Surgery. Ann. Thorac. Surg. (2021) doi:10.1016/j.athoracsur.2021.06.025.
		Tripathi, B. et al. Hospital Complications and Causes of 90-Day Readmissions After
		Implantation of Left Ventricular Assist Devices. Am. J. Cardiol. 122, 420–430 (2018).
		Briasoulis, A. et al. Trends and outcomes of device-related 30-day readmissions after left
		ventricular assist device implantation. Eur. J. Intern. Med. 84, 56–62 (2021).
Congenital Top Abstracts	J. Maxwell Chamberlain	1. Desai, J., Aggarwal, S., Lipshultz, S., Agarwal, P., Yigazu, P., Patel, R., Seals, S. and
	Memorial Paper for	Natarajan, G. Surgical interventions in infants born preterm with congenital heart defects:
	Congenital Surgery:	an analysis of the Kids' inpatient database. The Journal of pediatrics, 2017;191:103-109.
	Presence of Cross-Volume Effect Between Pediatric	2. Setton, M., He, W. and Benavidez, O.J. Morbidity during adult congenital heart surgery
	and Adult Congenital	admissions. Pediatric cardiology, 2019;40:987-993.
	Cardiac Operations in the	
	US	3. Jenkins, K.J. and Gauvreau, K. Center-specific differences in mortality: preliminary
		analyses using the Risk Adjustment in Congenital Heart Surgery (RACHS-1) method. The
		Journal of thoracic and cardiovascular surgery, 2001;124:97-104.
		4. Jacobs, J.P. Introduction-databases and the assessment of complications associated with
		the treatment of patients with congenital cardiac disease. Cardiology in the Young,
		2008;18:1-37.
Congenital Top Abstracts	Richard E. Clark Memorial	Pasquali SK, Jacobs JP, He X, et al. The complex relationship between center volume and
	Paper for Congenital Heart	outcome in patients undergoing the Norwood operation. The Annals of thoracic surgery. 2012;93(5):1556-1562.
	Surgery: Mortality Prediction Following	Jacobs JP, O'Brien SM, Pasquali SK, et al. The Society of Thoracic Surgeons Congenital Heart
	Cardiac Surgery in Children	Surgery Database Mortality Risk Model: Part 2-Clinical Application. The Annals of thoracic
	– An STS CHSD Analysis	surgery. 2015;100(3):1063-1068; discussion 1068-1070.
Congenital Top Abstracts	Hypoplastic Left Heart	Siffel C, Riehle-Colarusso T, Oster ME, Correa A. Survival of Children With Hypoplastic Left
	Syndrome with Low Birth	Heart Syndrome. Pediatrics. 2015 Oct;136(4):e864-70. doi: 10.1542/peds.2014-1427.
	Weight and Prematurity: What is the Optimal	Pizarro C, Derby CD, Baffa JM, Murdison KA, Radtke WA. Improving the outcome of high-risk neonates with hypoplastic left heart syndrome: hybrid procedure or conventional surgical
	Management?	palliation? Eur J Cardiothorac Surg. 2008 Apr;33(4):613-8. doi: 10.1016/j.ejcts.2007.12.042.
Congenital Top Abstracts	Long-Term Outcomes of	Ouzounian M, Mazine A and David TE. The Ross procedure is the best operation to treat
	Konno Procedure Versus	aortic stenosis in young and middle-aged adults. The Journal of Thoracic and Cardiovascular
	Ross Procedure in Children	Surgery. 2017;154:778-782.
	with Left Ventricular Outflow Tract Anomaly;	Sakamoto T, Kurosawa H et al. Long-term results of Konno procedure for complex left ventricular outflow tract obstruction. Eur J Cardiothorac Surg. 2008;34:37-41.
	Single Center Study	יפותויכאומי סמנווטיש נומכנ סטפנומכנוטוו. במו ז כמומוטנווטומב שמוץ, 2000,54.57-41.
Congenital Top Abstracts	Volume should not be used	Anagnostopoulos PV et al. Commentary: Regionalization of Congenital Heart Care in the
	as the sole criterion in	United States: Small Improvements in Outcomes - but At What Expense? Semin Thorac
	designing regionalization of	Cardiovasc Surg. 2020;32:138-139
	care systems in Congenital	Welke KF et al. Regionalization of Congenital Heart Surgery in the United States: Semin
General Thoracic Top	Cardiac Surgery J. Maxwell Chamberlain	Thorac Cardiovasc Surg. 2020;32:128-137 1)Annesi CA, Poulson M, Mak KS, Tapan U, Dechert TA, Litle VR, Suzuki K. The Impact of
Abstracts	Memorial Paper for	residential racial segregation on non-small cell lung cancer treatment and outcomes. Ann
	General Thoracic Surgery:	Thorac Surg. 2021; In Press. DOI: https://doi.org/10.1016/j.athoracsur.2021.04.096.
	Understanding Racial	
	Differences in Lung Cancer	2)Lam MB, Raphael K, Mehtsun WT, Phelan J, Orav EJ, Jha AK, Figueroa JF. Changes in racial
	Surgery Through A	disparities in mortality after cancer surgery in the US, 2007-2016. JAMA Netw Open. 2020;
		2/12): 02027/15
	Statewide Quality	3(12): e2027415
6	Statewide Quality Collaborative	
General Thoracic Top	Statewide Quality Collaborative Richard E. Clark Memorial	Tsiouris A, et al. A modified frailty index to assess morbidity and mortality after lobectomy. J
General Thoracic Top Abstracts	Statewide Quality Collaborative Richard E. Clark Memorial Paper for General Thoracic	Tsiouris A, et al. A modified frailty index to assess morbidity and mortality after lobectomy. J Surg Res. 2013;183:40–6.
•	Statewide Quality Collaborative Richard E. Clark Memorial	Tsiouris A, et al. A modified frailty index to assess morbidity and mortality after lobectomy. J

	Outcomes after Lung Resection	
General Thoracic Top Abstracts	Access to Care Metrics in Clinical Stage I Non-Small Cell Lung Cancer: Improved Access Is Associated With Improved Survival	 Samson P, Crabtree T, Broderick S, et al. Quality Measures in Clinical Stage I Non-Small Cell Lung Cancer: Improved Performance Is Associated With Improved Survival. In: Annals of Thoracic Surgery. Vol 103. Elsevier USA; 2017:303-311. doi:10.1016/j.athoracsur.2016.07.003 Heiden BT, Eaton Jr DB, Engelhardt KE, et al. Analysis of Delayed Surgical Treatment and Oncologic Outcomes in Clinical Stage I Non–Small Cell Lung Cancer. JAMA Netw Open. 2021;4(5):e2111613-e2111613. doi:10.1001/jamanetworkopen.2021.11613
General Thoracic Top Abstracts	Identifying Barriers to Annual Lung Cancer Screening in an Underserved Population	National Lung Screening Trial Research Team, Aberle DR, Berg CD, et al. The National Lung Screening Trial: overview and study design. Radiology. 2011;258(1):243-253. Erkmen CP, et al. Adherence to annual lung cancer screening with low-dose CT scan in a diverse population. Cancer Causes Control. 2021;32:291-298.
General Thoracic Top Abstracts	Patterns and Predictors of Recurrence Following Complete Resection of Stage I-II Non-small-cell Lung Cancer: Results from the National Lung Screening Trial	1. Cho, S., Yum, S., Kim, K., & Jheon, S. (2018). Prognostic factors for post-recurrence survival in patients with completely resected Stage III (N2) non-small-cell lung cancer. European Journal of Cardio-thoracic Surgery, 54(3), 554-559.
		 Varlotto, J. M., Recht, A., Flickinger, J. C., Medford-Davis, L. N., Dyer, A. M., & Decamp, M. M. (2009). Factors associated with local and distant recurrence and survival in patients with resected nonsmall cell lung cancer. Cancer, 115(5), 1059–1069.
Controversies in Coronary Revascularization	On- Versus Off-Pump Bypass Surgery for Left Main Disease: 5-Year Results from the EXCEL Trial	Benedetto U, et al. Off-Pump Versus On-Pump Bypass Surgery for Left Main Coronary Artery Disease. J Am Coll Cardiol. 2019 Aug 13;74(6):729-740. Stone GW, et al. Five-Year Outcomes after PCI or CABG for Left Main Coronary Disease. N Engl J Med. 2019 Nov 7;381(19):1820-1830.
Controversies in Coronary Revascularization	National Multi-arterial Coronary Artery Bypass Grafting Practice Patterns in the USA- A Report from the Society of Thoracic Surgeons Adult Cardiac Surgery Database	 Gaudino M, Benedetto U, Fremes S, et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med. 2018;378(22):2069-2077. doi:10.1056/NEJMoa1716026 Gaudino M, Benedetto U, Fremes S, et al. Association of Radial Artery Graft vs Saphenous Vein Graft With Long-term Cardiovascular Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting: A Systematic Review and Meta-analysis. JAMA. 2020;324(2):179. doi:10.1001/jama.2020.8228
Controversies in Coronary Revascularization	Total Arterial revascularisation gives the best long term survival over 20 years.	 Cameron A, Davis KB, Green G, Schaff HV. Coronary bypass surgery with internal-thoracic- artery grafts — effects on survival over a 15-year period. N Engl J Med 1996;334:216- 219.Lytle BW, Blackstone EH, Loop FD, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 1999;117:855-72.8. Taggart, DP, Benedetto, U, Gerry, S, Altman, DG, Gray, AM, Lees, B, Gaudino, M, Zamvar, V, Bochenek, A, Buxton, B, et al; Arterial Revascularization Trial Investigators. Bilateral versus single internal-thoracic-artery grafts at 10 years. N Engl J Med. 2019;380:437–446. Nimesh D. Desai, M.D., Eric A. Cohen, M.D., C. David Naylor, M.D., D.Phil., and Stephen E. Fremes, M.D., for the Radial Artery Patency Study Investigators N Engl J Med 2004;351:2302-9.
Controversies in Coronary Revascularization	A Randomized Trial of Effect on Ticagrelor after Coronary Artery Bypass Grafting in Patients with Clopidogrel Resistance	 Stefano Bevilacqua, et al. Risk stratification after coronary artery bypass surgery by a point-of-care test of paltelet function. Ann Thorac Surg. 2009;87:496-502. Manne Holm, et al. Bleeding in patients treated with ticagrelor or clopidogrel before coronary artery bypass grafting. Ann Thorac Surg. 2019;107:1690-1698. Matteo Vercellino, et al. Ticagrelor versus clopidogrel in real-world patients with ST elevation myocardiac infarction. BMC Cardiovascular disorders. 2017;17:97.
Controversies in Coronary Revascularization	Differential Performance of Machine Learning Algorithms to Classify Outcomes Following Isolated Coronary Artery Bypass Grafting	O'Brien SM, et al. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 2—Statistical Methods and Results. Annals of Thoracic Surgery. 2018;105(5):1419- 1428. Kilic A, et al. Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery. In: Annals of Thoracic Surgery. Vol 109. Elsevier USA; 2020:1811-1819.
It's Not in the BooksSo How Do They Do It?	Cone Repair for Ebstein's Anomaly: Risk Factors for Intraoperative Failure.	Dearani JA et al. Anatomic Repair of Ebstein's Malformation: Lessons Learned With Cone Reconstruction. Ann Thorac Surg 2013;95:220-8 Dearani JA et al. Strategies for Tricuspid Re-Repair in Ebstein Malformation Using the Cone Technique. Ann Thorac Surg 2013;96:202–10
It's Not in the BooksSo How Do They Do It?	Truncal Valve Repair	Bouhmout I, et al. Biscuspidization of a quadricuspid truncal valve. Multimed Man Cardiothorac Surg. 2017 Jan 16;2017 Naimo P, et al. The quadricuspid truncal valve: Surgical management and outcomes. J
It's Not in the BooksSo How Do They Do It?	The Right Atrial Appendage valve (RAA valve) for the Right Ventricular Outflow	Thorac Cardiovasc Surg. 2021 Feb;161(2):368-375 1-Sasson L, Houri S, Sternfeld AR, Cohen I, Lenczner O, Bove EL et al. Right ventricular outflow tract strategies for repair of tetralogy of Fallot: effect of monocusp valve reconstruction. European Journal of Cardio-Thorac Surg, 2013; 43(4): p. 743-751

	Tract Reconstruction, The First 3 Years of Experience.	2-Karl TR. Tetralogy of Fallot: A surgical perspective. Korean J Thorac Cardiov Surg, 2012; 45(4): p. 213.
It's Not in the BooksSo How Do They Do It?	Prophylactic Commissural Resuspension During Unroofing Procedure for Anomalous Coronary Artery with Intramural Course- How to do it	 Yerebakan C, Ozturk M, Mota L, Sinha L, Gordish-Dressman H, Jonas R, Sinha P. Complete unroofing of the intramural coronary artery for anomalous aortic origin of a coronary artery: The role of commissural resuspension? J Thorac Cardiovasc Surg. 2019 Jul;158(1):208-217.e2. doi: 10.1016/j.jtcvs.2019.01.140. Epub 2019 Mar 2. PMID: 30955961. Jegatheeswaran A, Devlin PJ, Williams WG, Brothers JA, Jacobs ML, DeCampli WM, Fleishman CE, Kirklin JK, Mertens L, Mery CM, Molossi S, Caldarone CA, Aghaei N, Lorber RO, McCrindle BW. Outcomes after anomalous aortic origin of a coronary artery repair: A Congenital Heart Surgeons' Society Study. J Thorac Cardiovasc Surg. 2020 Sep;160(3):757- 771.e5. doi: 10.1016/j.jtcvs.2020.01.114. Epub 2020 Apr 13. PMID: 32800265.
Lung Cancer	Risk Factors for Readmission After Pulmonary Lobectomy for Lung Cancer: A Quality Collaborative Study	Brown LM, Thibault DP, Kosinski AS, Cooke DT, Onaitis MW, Gaissert HA, Romano PS. Readmission After Lobectomy for Lung Cancer: Not All Complications Contribute Equally Ann Surg. 2021 Jul 1;274(1):e70-e79 Rajaram R, Ju MH, Bilimoria KY, Ko CY, DeCamp MM. National evaluation of hospital readmission after pulmonary resection. J Thorac Cardiovasc Surg. 2015 Dec;150(6):1508-14
Lung Cancer	A National Survey of Surgeons Evaluating the Accuracy of Mediastinal Lymph Node Identification	 American College of Surgeons Clinical Research Program, Alliance for Clinical Trials in Oncology. Operative standards for cancer surgery. Wolters Kluwer Health Adis (ESP), 2015. D'Amico TA, Niland J, Mamet R, Zornosa C, Dexter EU, Onaitis MW. Efficacy of mediastinal lymph node dissection during lobectomy for lung cancer by thoracoscopy and thoracotomy. Ann Thorac Surg. 2011 Jul;92(1):226-31 Commission on Cancer Operative Standards 2020: Standard 5.8: Pulmonary Resection (facs.org)
Lung Cancer	Cost Variation and Value of Care in Pulmonary Lobectomy Across the United States	 Medbery et al. Costs Associated With Lobectomy for Lung Cancer: An Analysis Merging STS and Medicare Data. Ann Thorac Surg. 2021;111:1781-1790. Khullar et al. Time is Money: Hospital Costs Associated With Video-Assisted Thoracoscopic Surgery Lobectomies. Ann Thorac Surg. 2016;102:940-947.
Lung Cancer	Association of Lymph Node Sampling and Clinical Center Volume in Pulmonary Lobectomy for Non-Small Cell Lung Cancer	 David EA, et al. Does Lymph Node Count Influence Survival in Surgically Resected Non-Small Cell Lung Cancer? Ann Thorac Surg. 2017;103(1):226-35. Resio BJ, et al. Invasive Staging Procedures Do Not Prevent Nodal Metastases from Being Missed In Stage I Lung Cancer. Ann Thorac Surg. 2020.
Lung Cancer	Germline Genetic Variants In Patients With Multiple Primary Malignancies Involving Lung Cancer	 Li F, Zhong WZ, Niu FY, et al. Multiple primary malignancies involving lung cancer. BMC Cancer. 2015;15:696. Villacis RAR, Basso TR, Canto LM, et al. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J Mol Med (Berl). 2017;95:523-533. Pilie PG, Johnson AM, Hanson KL, et al. Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer. 2017;123:3925-3932. Haraguchi S, Koizumi K, Hioki M, Hisayoshi T, Hirata T, Shimizu K. Hereditary factors in multiple primary malignancies associated with lung cancer. Surg Today. 2007;37:375-378.
Esophagus	Neoadjuvant camrelizumab plus chemotherapy for resectable, locally advanced esophageal squamous cell carcinoma (NIC-ESCC2019): a multicenter, phase 2 study	 Li C, et al. Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1). Eur J Cancer 2020; 144:232-241. Xu R: ESCORT-1st: A randomized, double-blind, placebo-controlled, phase 3 trial of camrelizumab plus chemotherapy versus chemotherapy in patients with untreated advanced or metastatic esophageal squamous cell carcinoma (ESCC). ASCO 2021 annual meeting. Oral presentation, #4000. Huang J, et al. Camrelizumab versus investigator's choice of chemotherapy as second- line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): a multicentre, randomised, open-label, phase 3 study. Lancet Oncol 2020; 21:832-842. Hong MH, et al. A phase II trial of preoperative chemoradiotherapy and pembrolizumab for locally advanced esophageal squamous cell carcinoma (ESCC). ASCO 2019 annual meeting. #4027.
Esophagus	Neoadjuvant Immunotherapy and Chemoradiation Followed By Esophagectomy for Esophageal Cancer: A National Analysis of Short- and Intermediate-Term Outcomes	 Sihag S, Ku GY, Tan KS, et al. Safety and feasibility of esophagectomy following combined immunotherapy and chemoradiotherapy for esophageal cancer. J Thorac Cardiovasc Surg. 2021;161(3):836-843.e1. doi:10.1016/j.jtcvs.2020.11.106 Janjigian YY, Shitara K, Moehler M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27-40. doi:10.1016/S0140-6736(21)00797-2

Esophagus	Morbidity and Mortality Following Esophagectomy is Higher for Benign than Malignant Disease	Devaney EJ, Lannettoni MD, Orringer MB, Marshall B. Esophagectomy for achalasia: patient selection and clinical experience. Ann Thorac Surg. 2001 Sep;72(3):854-848. Linden PA, Towe CW, Watson TJ, et al. Mortality after esophagectomy: analysis of individual complications and their association with mortality. J Gastrointest Surg. 2020 Sep;24(9):1948-1954. Luketich JD, Pennathur A, Awais O, et al. Outcomes after minimally invasive esophagectomy: review of over 1000 patients. Ann Surg. 2012;256(1):95-103. Masabni K, Kandagatla, Popoff AM, et al. Is esophagectomy for benign conditions benign? Ann Thorac Surg. 2018;106:368-374.
Esophagus	Robotic esophagectomy trends and early surgical outcomes: The US experience	Biere SS, van Berge Henegouwen MI, Maas KW, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet 2012;379:1887-92. Straatman J, van der Wielen N, Cuesta MA, et al. Minimally Invasive Versus Open Esophageal Resection: Three-year Follow-up of the Previously Reported Randomized Controlled Trial: the TIME Trial. Ann Surg 2017;266:232-6.
Esophagus	A Cathepsin Targeted, Quenched Activity Based Probe Allows Real-Time Intraoperative Detection of Esophageal Adenocarcinoma	Markar SR, et al. Significance of microscopically incomplete resection margin after esophagectomy for esophageal cancer. Ann Surg. 2016;263:712–8. Lauwerends LJ, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021;22:186-195.
Focus on Congenital Surgical Challenges	Does procedure volume impact outcomes of the Ross Procedure in children? A Society of Thoracic Surgeons Congenital Heart Surgery Database Analysis	Nelson JS, Pasquali SK, Pratt CN, et al. Long-Term Survival and Reintervention After the Ross Procedure Across the Pediatric Age Spectrum. Ann Thorac Surg. 2015 Jun;99(6):2086-94. Bansal N, Kumar SR, Baker CJ, Lemus R, Wells WJ, Starnes VA. Age-Related Outcomes of the Ross Procedure Over 20 Years. Ann Thorac Surg. 2015 Jun;99(6):2077-85.
Focus on Congenital Surgical Challenges	A Randomized Clinical Trial of Perfusion Modalities on Cerebral Hemodynamics, Pediatric Logistic Organ Dysfunction Score, and Clinical Outcomes in Congenital Heart Surgery Patients	 Rogerson A, Guan Y, Kimatian SJ, et al. Transcranial Doppler ultrasonography: a reliable method of monitoring pulsatile flow during cardiopulmonary bypass in infants and young children. J Thorac Cardiovasc Surg. 2010;139(4):e80-82. Leteurtre S, Duhamel A, Deken V, Lacroix J, Leclerc F. Daily estimation of the severity of organ dysfunctions in critically ill children by using the PELOD-2 score. Crit Care. 2015;19(1):324. Aĝirbaşli MA, Song J, Lei F, et al. Comparative effects of pulsatile and nonpulsatile flow on plasma fibrinolytic balance in pediatric patients undergoing cardiopulmonary bypass. Artif Organs. 2014;38(1):28-33.
Focus on Congenital Surgical Challenges	Outcomes after Stage 1 Palliation including Systemic to Pulmonary Shunt and Pulmonary Artery Banding in Patients undergoing Single Ventricle Reconstruction	 d'Údekem et al. Predictors of survival after single-ventricle palliation: the impact of right ventricular dominance. J Am Coll Cardiol. 2012;59(13):1178-1185 Ono et al. Clinical outcome following total cavopulmonary connection: a 20-year single- centre experience. Eur J Cardiothorac Surg. 2016;50:632–41
Focus on Congenital Surgical Challenges	Impact of total anomalous pulmonary venous connection on outcome during staged single ventricle palliation	Nichay NR, Gorbatykh YN, Kornilov IA, Soynov IA, Kulyabin YY, Gorbatykh AV, Ivantsov SM, Bogachev-Prokophiev AV, Karaskov AM. Risk Factors For Unfavorable Outcomes After Bidirectional Cavopulmonary Anastomosis. World J Pediatr Congenit Heart Surg. 2017 Sep;8(5):575-583. doi: 10.1177/2150135117728505. PMID: 28901234. Nakayama Y, Hiramatsu T, Iwata Y, Okamura T, Konuma T, Matsumura G, Suzuki K, Hobo K, Nakanishi T, Kurosawa H, Yamazaki K. Surgical results for functional univentricular heart with total anomalous pulmonary venous connection over a 25-year experience. Ann Thorac Surg. 2012 Feb;93(2):606-13. doi:
Focus on Congenital Surgical Challenges	Transposition of Great Arteries with Intact Ventricular Septum and Left Ventricular Outflow Tract Obstruction (TGA-IVS-	 Freedom RM, Smallhorn JF, Trusler GA. Transposition of the Great Arteries. In: Neonatal Heart Disease. London: Springer London; 1992:179-212. Emani SM, Beroukhim R, Zurakowski D et al. Outcomes after anatomic repair for d- transposition of the great arteries with left ventricular outflow tract obstruction. Circulation. 2009 15;120(11 Suppl):S53-8

	LVOTO): Patterns of	
From the Ascending to the Descending Aorta	Practice and Outcomes. Impact of a Direct-to- Operating Room Aortic Emergency Transfer Program for Type A Aortic Dissection	Rampoldi V, Trimarchi S, Eagle KA, Nienaber CA, Oh JK, Bossone E, Myrmel T, Sangiorgi GM, De Vincentiis C, Cooper JV, Fang J, Smith D, Tsai T, Raghupathy A, Fattori R, Sechtem U, Deeb MG, Sundt TM 3rd, Isselbacher EM; International Registry of Acute Aortic Dissection (IRAD) Investigators. Simple risk models to predict surgical mortality in acute type A aortic dissection: the International Registry of Acute Aortic Dissection score. Ann Thorac Surg. 2007 Jan;83(1):55-61. doi: 10.1016/j.athoracsur.2006.08.007. PMID: 17184630. Evangelista, A, Isselbacher, EM, Bossone E, Gleason TG, Eusanio MD, Sechtem, U, Ehrlich MP, Trimarchi, S, Braverman, AC, Myrmel T et al. Insights From the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research Circulation. 2018.doi: 10.1161/circulationaha.117.031264. 137:1846–1860.
From the Ascending to the Descending Aorta	How Do Patients with Ascending Thoracic Aortic Aneurysm Die?	 Zafar MA, Li Y, Rizzo JA, et al. Height alone, rather than body surface area, suffices for risk estimation in ascending aortic aneurysm. J Thorac Cardiovasc Surg. 2018;155(5):1938-1950. Zafar MA, Chen JF, Wu J, et al. Natural history of descending thoracic and thoracoabdominal aortic aneurysms. J Thorac Cardiovasc Surg. 2021;161(2):498-511 e491.
From the Ascending to the Descending Aorta	The New Type A Arch Remodelling Stent for DeBakey I Acute Aortic Dissection: Results and Performance in 100 Implantations	 Montagner M, Kofler M, Buz S, Kempfert J. Hybrid arch repair for acute type A aortic dissection: a new concept and step-by-step procedure. Interact Cardiov Th. 2021;ivaa341 Montagner M, Kofler M, Heck R, Buz S, Starck C, Kurz S, et al. Initial experience with the new type A arch dissection stent: restoration of supra-aortic vessel perfusion. Interact Cardiov Th. 2021; Bozso SJ, Nagendran J, MacArthur RGG, Chu MWA, Kiaii B, El-Hamamsy I, et al. Dissected Aorta Repair Through Stent Implantation trial: Canadian results. J Thorac Cardiovasc Surg. 2019;157(5):1763–71. Bozso SJ, Nagendran J, Chu MWA, Kiaii B, El-Hamamsy I, Ouzounian M, et al. Midterm Outcomes of the Dissected Aorta Repair Through Stent Implantation Trial. Ann Thorac Surg. 2021;111(2):463–70. Bozso SJ, Nagendran J, Chu MWA, Kiaii B, El-Hamamsy I, Ouzounian M, et al. Single-Stage Management of Dynamic Malperfusion Using a Novel Arch Remodeling Hybrid Graft. Ann Thorac Surg. 2019;108(6):1768–75.
From the Ascending to the Descending Aorta	Progression of Distal Aortic Dilation After Hemiarch and Zone 1, 2, 3 Arch Replacement in Acute Type A Aortic Dissection	 Yang B, Norton EL, Shih T, Farhat L, Wu X, Hornsby WE, Kim KM, Patel HJ, Deeb GM. Late outcomes of strategic arch resection in acute type A aortic dissection. J Thorac Cardiovasc Surg. 2019 Apr;157(4):1313-1321.e2. doi: 10.1016/j.jtcvs.2018.10.139. Epub 2018 Nov 14. PMID: 30553592; PMCID: PMC6441394. Norton EL, Wu X, Kim KM, Fukuhara S, Patel HJ, Deeb GM, Yang B. Is hemiarch replacement adequate in acute type A aortic dissection repair in patients with arch branch vessel dissection without cerebral malperfusion? J Thorac Cardiovasc Surg. 2021 Mar;161(3):873-884.e2. doi: 10.1016/j.jtcvs.2020.10.160. Epub 2020 Dec 10. PMID: 33451835; PMCID: PMC7935741. Chen Y, Ma WG, Zhi AH, Lu L, Zheng J, Zhang W, Liu YM, Zhu JM, Elefteriades JA, Sun LZ. Fate of distal aorta after frozen elephant trunk and total arch replacement for type A aortic dissection in Marfan syndrome. J Thorac Cardiovasc Surg. 2019 Mar;157(3):835-849. doi: 10.1016/j.jtcvs.2018 Aug 24. PMID: 30635189. Heo W, Song SW, Lee KH, Kim TH, Baek MY, Yoo KJ, Cho BK. Residual Arch Tears and Major Adverse Events After Acute DeBakey Type I Aortic Dissection Repair. Ann Thorac Surg. 2018 Oct;106(4):1079-1086. doi: 10.1016/j.athoracsur.2018.05.067. Epub 2018 Jun 28. PMID: 2995944.
From the Ascending to the Descending Aorta	The Penn Classification System For Malperfusion In Acute Type A Dissection: A 25 Year Experience	 Geirsson A, et al. Significance of malperfusion syndromes prior to contemporary surgical repair for acute type a dissection: Outcomes and need for additional revascularizations. Eur J Cardiothorac Surg 2007;32:255–62. Grimm JC et al. Differential outcomes of type A dissection with malperfusion according to affected organ system. Annals of Cardiothoracic Surgery 2016;5:202–8. Augoustides JG, et al. Observational study of mortality risk stratification by ischemic presentation in patients with acute type a aortic dissection: The penn classification. Nat Clin Pract Cardiovasc Med 2009;6:140–6.
Vivien T. Thomas Symposium	Race is a Risk Factors for the Deferral of Resection and Radiation for Early Stage Lung Cancer	Mehta RS, et al. Race and health disparities in patient refusal of surgery for early-stage non- small cell lung cancer: A seer cohort study. Annals of Surgical Oncology 2012;19(3):722-727. Tohme S, et al. Race and Health Disparities in Patient Refusal of Surgery for Early-Stage Pancreatic Cancer: An NCDB Cohort Study. Annals of Surgical Oncology 2018;25(12):3427- 3435.
Vivien T. Thomas Symposium	Women in Thoracic Surgery 2020 Update—Subspecialty and Work-Life Balance Analysis	 Ceppa DP, Antonoff MB, Tong BC, et al. 2020 Women in Thoracic Surgery update on the status of women in cardiothoracic surgery. Ann Thorac Surg. Published online April 12, 2021. doi:10.1016/j.athoracsur.2021.03.091 2018-2019 The State of Women in Academic Medicine: Exploring Pathways to Equity. AAMC. Accessed June 14, 2021. https://www.aamc.org/data-reports/data/2018-2019-state-women-academic-medicine-exploring-pathways-equity

		The second se
Vivien T. Thomas Symposium	Randomized Trials in Cardiac Surgery and Representation of Non- White Population Associated Factors And	 Zhang T et al. Reporting and representation of ethnic minorities in cardiovascular trials: A systematic review. American Heart Journal. 2013 Jul 1;166(1):52–7. Khera R et al. Racial Disparities in Outcomes After Cardiac Surgery: the Role of Hospital Quality. Curr Cardiol Rep. 2015 Apr 18;17(5):29. 1- Gallo M, et al. Combined Heart-Kidney Transplant Versus Sequential Kidney Transplant in
Heart Failure and Transplantation	Impact Of Persistent Renal Dysfunction In Children Listed For Heart Transplantation	Heart Transplant Recipients. J Card Fail. 2020 Jul;26(7):574-579. 2-Karamlou T, et al. Combined heart-kidney transplant improves post-transplant survival compared with isolated heart transplant in recipients with reduced glomerular filtration rate: Analysis of 593 combined heart-kidney transplants from the United Network Organ Sharing Database. J Thorac Cardiovasc Surg. 2014 Jan;147(1):456-461.e1.
Advancements in Pediatric Heart Failure and Transplantation	Cardiac Transplantation in Patients with Congenital Heart Disease: The Impact of High Panel-Reactive Antibody	Shah S, Asante-Korang A, Ghazarian SR, Stapleton G, Herbert C, Decker J, Almodovar MC, Karl TR, Do NL, Quintessenza JA, Mavroudis C, Vricella LA, van Gelder HM, Kartha V, Alexander P, Carapellucci J, Krasnopero D, Hanson J, Amankwah E, Roth J, Jacobs JP. Risk Factors for Survival After Heart Transplantation in Children and Young Adults: A 22-Year Study of 179 Transplants. World J Pediatr Congenit Heart Surg. 2018 Sep;9(5):557-564. doi: 10.1177/2150135118782190. PMID: 30157732. Jacobs JP, Quintessenza JA, Boucek RJ, Morell VO, Botero LM, Badhwar V, van Gelder HM, Asante-Korang A, McCormack J, Daicoff GR. Pediatric cardiac transplantation in children with high panel reactive antibody. Ann Thorac Surg. 2004 Nov;78(5):1703-9. doi:
Advancements in Pediatric Heart Failure and Transplantation	Cardiac Transplantation in Pediatric Patients with Heterotaxy Syndrome	 10.1016/j.athoracsur.2004.03.031. PMID: 15511459. Rossano JW, Dipchand AI, Edwards LB, et al. The Registry of the International Society for Heart and Lung Transplantation: Nineteenth Pediatric Heart Transplantation Report – 2016; Focus Theme: Primary Diagnostic Indications for Transplant. J Heart Lung Transpl. 2016;35(1):1185-95. Karamlou T, Hirsch J, Welke K, et al. A united network for organ sharing analysis of heart transplantation in adults with congenital heart disease: outcomes and factors associated
		with mortality and retransplantation. J Thorac Cardiovasc Surg. 2010;140(1):161-168. Loomba RS, Morales DLS, Redington A. "Heterotaxy" in Critical Heart Disease in Infants and Children, 3rd Edition. Elsevier (2018).
Advancements in Pediatric Heart Failure and Transplantation	Re-intervention for Superior Vena Caval Obstruction After Pediatric Heart Transplantation	Neragi-Miandoab S, Baran D, Godelman A, Goldstein DJ. Orthotopic heart transplantation in patients with persistent left superior vena cava: bicaval and biatrial techniques. Ann Thorac Surg. 2014;97(3):1085-1087. Vricella LA, Razzouk AJ, Gundry SR, Larsen RL, Kuhn MA, Bailey LL. Heart transplantation in infants and children with situs inversus. J Thorac Cardiovasc Surg. 1998;116(1):82-89.
ERAS: The New Normal	Establishing Evidence- Based Opioid Prescribing Guidelines after Thoracic Surgery for Lung Cancer: A Prospective, Multicenter Analysis	 Brescia AA, Clark MJ, Theurer PF, et al. Establishment and Implementation of Evidence-Based Opioid Prescribing Guidelines in Cardiac Surgery. Ann Thorac Surg. 2020 Dec 4;S0003-4975(20)32084-1 Howard R, Waljee J, Brummett C, et al. Reduction in Opioid Prescribing Through Evidence-Based Prescribing Guidelines. JAMA Surg. 2018 Mar 1;153(3):285-287.
ERAS: The New Normal	Erector Spinae Plane Block Reduces the Incidence of Atrial Fibrillation in Patients undergoing Cardiac Surgery	 Chin KJ, et al. Mechanisms of action of the erector spinae plane (ESP) block: a narrative review. Can J Anaesth. 2021 Mar;68(3):387-408. English. doi: 10.1007/s12630-020-01875-2. Epub 2021 Jan 6. PMID: 33403545. Schwartzmann A, et al. A magnetic resonance imaging study of local anesthetic spread in patients receiving an erector spinae plane block. Can J Anaesth. 2020 Aug;67(8):942-948. English. doi: 10.1007/s12630-020-01613-8. Epub 2020 Mar 9. PMID: 32152885.
ERAS: The New Normal	Cutting Cost, Not Quality: Enhanced Recovery ICU- Bypass for Robotic-Assisted Coronary Artery Bypass Grafting (CABG)	Leyvi, Galina et al. Robotic coronary artery bypass grafting decreases 30-day complication rate, length of stay, and acute care facility discharge rate compared with conventional surgery. Innovations. 2014; 9,5: 361-367. Raad WN, et al. The Impact of Robotic Versus Conventional Coronary Artery Bypass Grafting on In-Hospital Narcotic Use: A Propensity-Matched Analysis. Innovations. 2016; 11,2: 112-115. Pasrija C, et al. Cost and Outcome of Minimally Invasive Techniques for Coronary Surgery Using Robotic Technology. Innovations. 2018; 13,4: 282-286.
ERAS: The New Normal	The Impact of Multimodal Prehabilitation Strategy on Perioperative Outcomes in Frail Patients Undergoing Coronary Artery Bypass Grafting	 Engelman DT. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg 2019; 154(8):755-766 Coca-Martinez M et al. Multimodal prehabilitation as strategy for reduction of postoperative complications after cardiac surgery: a randomised controlled trial protocol. BMJ Open 2020; 10:e039885

ERAS: The New Normal	Bundle Up: Preventing Surgical Wound Infections	1. Claudia Delgado-Corcoran MD, et al. Reducing Pediatric Sternal Wound Infections: A Quality Improvement Project. Pediatr Crit Care Med. 2017 May;18(5):461-468.
	in Pediatric Cardiothoracic Surgery	 Lazar HL, et al. Prevention and management of sternal wound infections The Journal of Thoracic and Cardiovascular Surgery 2016 Oct;152(4):962-972.
		3. Woodward CS, Son M. Calhoon J, Michalek J, Husain SA. Sternal Wound Infections in pediatric congenital cardiac surgery: a survery of incidence and preventative practice. Ann Thorac Surg. 2011 Mar;91(3):799-804.
Making an Irregular Heart Rhythm Normal Again	Surgical Ablation of Atrial Fibrillation during Aortic and Mitral Valve Surgery: A Nationwide Population- Based Cohort Study	Malaisrie SC, McCarthy PM, Kruse J, et al. Ablation of atrial fibrillation during coronary artery bypass grafting: Late outcomes in a Medicare population. J Thorac Cardiovasc Surg. Apr 2021;161(4):1251-1261 e1. doi:10.1016/j.jtcvs.2019.10.159 Iribarne A, DiScipio AW, McCullough JN, et al. Surgical Atrial Fibrillation Ablation Improves Long-Term Survival: A Multicenter Analysis. Ann Thorac Surg. Jan 2019;107(1):135-142. doi:10.1016/j.athoracsur.2018.08.022
Making an Irregular Heart Rhythm Normal Again	Impact of Left Atrial Appendage Clipping and Ligament of Marshall Ligation on Resolution of Atrial Fibrillation Post- Hybrid Ablation	Afzal M, Kanmanthareddy A, Earnest M, et al. Impact of left atrial appendage exclusion using an epicardial ligation system (LARIAT) on atrial fibrillation burden in patients with cardiac implantable electronic devices. Heart Rhythm. 2015:52-59.
		Blackshear J and Odell J. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Annals of Thoracic Surgery. 1996:755-759.
		Chugh A, Gurm H, Krishnasamy K, et al. Spectrum of atrial arrhythmias using the ligament of Marshall in patients with atrial fibrillation. Clinical Atrial Fibrillation. 2018:17-24.
		Di Biase L, Burkhardt JD, Mohanty P, et al. Left atrial appendage: an underrecognized trigger site of atrial fibrillation. Circulation. 2010:109–118.
		Gehi A, Kiser A, Mounsey J. Atrial Fibrillation Ablation by the Epicardial Approach. Journal of Atrial Fibrillation. 2014:979.
		He B, Wang X, Zhao F, et al. The ligament of Marshall and arrhythmias: A review. Pacing and Clinical Electrophysiology. 2020.
		Kashimura S, Fujisawa T, Nakajima K, et al. Electrical Isolation of the Marshall Bundle by Radiofrequency Catheter Ablation: In Patients With Atrial Fibrillation. JACC: Clinical Electrophysiology. 2020:1647-1657.
		Laar C, Verberkmoes N, van Es H, et al. Thoracoscopic Left Atrial Appendage Clipping: A Multicenter Cohort Analysis. JACC: Clinical Electrophysiology. 2018:893-901.
		Rodriguez-Manero M, Schurmann P, Valderrabano M. Ligament and Vein of Marshall. A therapeutic opportunity in atrial fibrillation. Heart Rhythm. 2016:593-601.
		Starck C, Steffel J, Emmert M, et al. Epicardial left atrial appendage clip occlusion also provides the electrical isolation of the left atrial appendage. Interactive Cardiovascular and Thoracic Surgery. 2012:416-418.
		Whitlock R, Belley-Cote E, Paparella D, et al. Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. The New England Journal of Medicine. 2021.
Making an Irregular Heart Rhythm Normal Again	Thoracoscopic surgical ablation of lone atrial fibrillation: long-term outcomes at 7 years	Muneretto C, Bisleri G, Rosati F, Krakor R, Giroletti L, Di Bacco L, et al. European prospective multicentre study of hybrid thoracoscopic and transcatheter ablation of persistent atrial fibrillation: the HISTORIC-AF trial. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 2017;52:740–5. Eur Heart J. 2021 Feb 1;42(5):373-498. doi: 10.1093/eurheartj/ehaa612.

Congenital Basic Science Innovation / Data and	The Dose-effect of Mesenchymal Stromal Cell	Maeda, T., Sarkislali, K., Leonetti, C., Kapani, N., Dhari, Z., Haj, A., Ulrey, R., Hanley, P. J., Jonas, R. A., & Ishibashi, N. (2020). Impact of Mesenchymal Stromal Cell Delivery Through
Associated Implications in Programmatic Classification	Delivery through Cardiopulmonary Bypass in a Juvenile Porcine Model	Cardiopulmonary Bypass on Postnatal Neurogenesis. The Annals of Thoracic Surgery, 109, 1274–1281. https://doi.org/10.1016/j.athoracsur
		Ishibashi, N., Scafidi, J., Murata, A., Korotcova, L., Zurakowski, D., Gallo, V., & Jonas, R. A. (2012). White matter protection in congenital heart surgery. Circulation, 125(7), 859–871. https://doi.org/10.1161/CIRCULATIONAHA.111.048215
Congenital Basic Science Innovation / Data and Associated Implications in Programmatic Classification	A Murine Model of Extracorporeal Membrane Oxygenation	Luo S, Tang M, Du L, Gong L, Xu J, Chen Y et al. A novel minimal invasive mouse model of extracorporeal circulation. Mediators Inflamm 2015; 2015:412319. Madrahimov N, Boyle EC, Gueler F, Goecke T, Kno [°] fel A-K, Irkha V, et al. Novel mouse model of cardio- pulmonary bypass. Eur J Cardio-Thoracic Surg. 2017; 137: 1530–7.
Congenital Basic Science Innovation / Data and Associated Implications in Programmatic Classification	Mechanical and Structural Changes of the Pulmonary Graft After a Ross Operation in a Rodent Model	Vanderveken E, Vastmans J, Claus P, et al. Mechano-biological adaptation of the pulmonary artery exposed to systemic conditions. Sci Rep. 2020;10(1):2724. David TE, Omran A, Ivanov J, et al. Dilation of the pulmonary autograft after the Ross procedure. J Thorac Cardiovasc Surg. 2000;119(2):210-220
Lung Transplant: Focus on COVID	Extracorporeal Membrane Oxygenation (ECMO) Support in Patients with	Abrams, Darryl, Roberto Lorusso, Jean-Louis Vincent, and Daniel Brodie. "ECMO during the COVID-19 pandemic: when is it unjustified?." (2020): 1-3.
	Covid-19: A Historical Control Propensity Score Matched Study	Lorusso, Roberto, Alain Combes, Valeria Lo Coco, Maria Elena De Piero, and Jan Belohlavek. "ECMO for COVID-19 patients in Europe and Israel." Intensive care medicine 47, no. 3 (2021): 344-348.
Lung Transplant: Focus on COVID	Early Initiation of Veno- Venous Extracorporeal Membrane Oxygenation	Deatrick, KB, et al. Outcomes of Venovenous Extracorporeal Membrane Oxygenation When Stratified by Age: How Old is Too Old? ASAIO Journal. 2020;66: 946-951.
	Support for COVID-19 Improves Survival	Patroniti N, et al. The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: Preparation for severe respiratory emergency outbreaks. Intensive Care Med 2011.37: 1447–1457
Lung Transplant: Focus on COVID	Ethical Dilemmas Regarding DNR, DNI and Comfort Measures in Cardiothoracic	Burack JH, Impellizzeri P, Homel P. Public reporting of surgical mortality: A survey of New York State cardiothoracic surgeons. Ann Thorac Surg. 1999; 68: 1195-202
	Surgery	D'Amico TA, McKneally MF, Sade RM. Ethics in cardiothoracic surgery: A survey of surgeons' views. Ann Thorac Surg. 2010 July; 90(1): 11-13.e1-4. doi: 10.1016/j.athoracsur.2010.03.061
		Eltorai AS. Malpractice litigation in cardiac surgery: Alleged injury mechanisms and outcomes. J Card Surg. 2019;34:323-28
		Omoigui NA, Miller DP, Brown KJ, et al. Outmigration for coronary bypass surgery in an era of public dissemination of clinical outcomes. Circulation. 1996; 93: 27-33
		Schneider EC, Epstein AM. Influence of cardiac surgery performance reports on referral practices and access to care. N Engl J Med. 1996; 335: 251-6
		Shahian DM, Edwards FH, Jacobs JP, et al. Public reporting of cardiac surgery performance: Part 1 - History, rationale, consequences. Ann Thorac Surg. 2011; 92: S2-S11
		Shahian DM, Torchiana DF, Normand SLT. Implementation of a cardiac surgery report card: Lessons from the Massachusetts experience. Ann Thorac Surg. 2005; 80: 1146-50
		Wasfy JH, Border WB, Secemsky EA, et al. Public reporting in cardiovascular medicine - accountability, unintended consequences, and promise for improvement. Circulation. 2015;131:1518-27
Structural Heart Disease	Impact of Hospital Volume of Outcome of Septal Myectomy for Hypertrophic Cardiomyopathy	 Wei, Lawrence M., Dylan P. Thibault, J. Scott Rankin, Mohamad Alkhouli, Harold G. Roberts, Sreekanth Vemulapalli, Babatunde Yerokun, et al. 2019. "Contemporary Surgical Management of Hypertrophic Cardiomyopathy in the United States." The Annals of Thoracic Surgery 107 (2): 460–66. Nguyen, Anita, and Hartzell V. Schaff. 2019. "Surgical Myectomy: Subaortic, Midventricular, and Apical." Cardiology Clinics 37 (1): 95–104.
Structural Heart Disease	Association of patient factors and bioprosthesis size with hemodynamic change over 5 years following RESILIA-based	Yongue C, et al. Durability and Performance of 2298 Trifecta Aortic Valve Prostheses: A Propensity-Matched Analysis. Ann Thoac Surg. 2021;111:1198-206. Johnston DR, et al. Long-Term Durability of Bioprosthetic Aortic Valves: Implications From 12,569 Implants. Ann Thorac Surg.2015;99:1239–47.
	aortic valve replacement	

Structural Heart Disease	Neighborhood	1) McCarthy FH, Zhang L, Tam V, et al. Geographically derived socioeconomic factors to
	Socioeconomic Status Independently Predicts Outcomes After Mitral Valve Surgery: A STS National Database Study	 improve risk prediction in patients having aortic valve replacement. Am J Cardiol 2019; 123: 116-22. 2) Kind AJH, Buckingham WR. Making neighborhood-disadvantage metrics accessible – the neighborhood atlas. N Engl J Med 2018; 378: 2456-8.
Structural Heart Disease	Edge-to-edge technique for Mitral Valve Repair compared to Mitral Replacement for Ischemic Mitral Regurgitation	Goldstein D, Moskowitz AJ, Gelijns AC, Ailawadi G, Parides MK, Perrault LP, Hung JW, Voisine P, Dagenais F, Gillinov AM, Thourani V, Argenziano M, Gammie JS, Mack M, Demers P, Atluri P, Rose EA, O'Sullivan K, Williams DL, Bagiella E, Michler RE, Weisel RD, Miller MA, Geller NL, Taddei-Peters WC, Smith PK, Moquete E, Overbey JR, Kron IL, O'Gara PT, Acker MA; CTSN. Two-Year Outcomes of Surgical Treatment of Severe Ischemic Mitral Regurgitation. N Engl J Med. 2016 Jan 28;374(4):344-53.
		Virk SA, Sriravindrarajah A, Dunn D, Liou K, Wolfenden H, Tan G, Cao C. A meta-analysis of mitral valve repair versus replacement for ischemic mitral regurgitation. Ann Cardiothorac Surg. 2015 Sep;4(5):400-10.
		Alfieri O, De Bonis M. The role of the edge-to-edge repair in the surgical treatment of mitral regurgitation. J Card Surg. 2010 Sep;25(5):536-41.
		Nishino S, Watanabe N, Kimura T, Enriquez-Sarano M, Nakama T, Furugen M, Koiwaya H, Ashikaga K, Kuriyama N, Shibata Y. The Course of Ischemic Mitral Regurgitation in Acute Myocardial Infarction After Primary Percutaneous Coronary Intervention: From Emergency Room to Long-Term Follow-Up. Circ Cardiovasc Imaging. 2016 Aug;9(8):e004841.
Structural Heart Disease	Impact of Tricuspid Valve Regurgitation on Late Outcomes of Surgery for	1. Dreyfus GD, Corbi PJ, Chan KMJ, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann. Thorac. Surg. 2005;79:127–132.
	Degenerative Mitral Valve Disease	 Chikwe J, Itagaki S, Anyanwu A, Adams DH. Impact of Concomitant Tricuspid Annuloplasty on Tricuspid Regurgitation, Right Ventricular Function, and Pulmonary Artery Hypertension After Repair of Mitral Valve Prolapse. J. Am. Coll. Cardiol. 2015;65:1931–1938. Hage A, Hage F, Jones PM, Manian U, Tzemos N, Chu MWA. Evolution of Tricuspid Regurgitation After Repair of Degenerative Mitral Regurgitation. Ann. Thorac. Surg. 2020;109:1350–1355.
		 David TE, David CM, Manlhiot C. Tricuspid annulus diameter does not predict the development of tricuspid regurgitation after mitral valve repair for mitral regurgitation due to degenerative diseases. J. Thorac. Cardiovasc. Surg. 2018;155:2429–2436. Benedetto U, Melina G, Angeloni E, et al. Prophylactic tricuspid annuloplasty in patients with dilated tricuspid annulus undergoing mitral valve surgery. J. Thorac. Cardiovasc. Surg. 2012;143:632–638.
Heart Transplant	Waitlist Trends in Heart- Liver Transplantation: An Analysis of the UNOS	1) Shore S, Golbus JR, Aaronson EK, et al. Changes in the United States Adult Heart Allocation Policy: Challenges and Opportunities. Circ Cardiovasc Qual Outcomes 2020; 13: e005795.
	Database	2) Fowler CC, Helmers MR, Smood B, et al. The modified US heart allocation system improves transplant rates and decreases status upgrade utilization for patients with hypertrophic cardiomyopathy. J Heart Lung Transplant 2021; doi: 10.1016/j.healun.2021.06.018.
Heart Transplant	The Combined Use of Veno- Arterial Extracorporeal Membrane Oxygenation	1. Schrage B, et al. Left Ventricular Unloading Is Associated With Lower Mortality in Patients With Cardiogenic Shock Treated With Venoarterial Extracorporeal Membrane Oxygenation: Results From an International, Multicenter Cohort Study. Circulation.
	(VA-ECMO) and Impella (ECPELLA) for 104 Patients in Cardiogenic Shock due to Fulminant Myocarditis	 2020;142(22):2095-2106. 2. Annamalai SK, et al. The Impella Microaxial Flow Catheter Is Safe and Effective for Treatment of Myocarditis Complicated by Cardiogenic Shock: An Analysis From the Global cVAD Registry. J Card Fail. 2018;24(10):706-710.
Heart Transplant	Impact of Previous Cardiac Surgery on Long-Term Survival After Heart Transplantation	Axtell AL, Fiedler AG, Lewis G, et al. Reoperative sternotomy is associated with increased early mortality after cardiac transplantation. Eur J Cardiothorac Surg 2019;55:1136-43. Colvin MM, Cook JL, Chang PP, et al. Sensitization in Heart Transplantation: Emerging Knowledge: A Scientific Statement From the American Heart Association. Circulation 2019;139:e553-e78.
Heart Transplant	Outcomes of Using Extended Criteria Donors for Heart-Lung Transplantation in the	Christie IG, et al. National Trends in Extended Criteria Donor Utilization and Outcomes for Lung Transplantation. Ann Thorac Surg. 2021;111:421-426. Huckaby LV, et al. Trends in the utilization of marginal donors for orthotopic heart transplantation. J Card Surg. 2021;36:1270-1276.
	Modern Era	
Heart Transplant	Extended ischemic time in cardiac transplantation has equivalent short and long- term outcomes: Time to	Yeen W, Polgar A, Guglin M, Downes K, Faber C, Roy A, et al. Outcomes of adult orthotopic heart transplantation with extended allograft ischemic time. Transplant Proc. 2013 Aug;45(6):2399–405. Young JB, Naftel DC, Bourge RC, Kirklin JK, Clemson BS, Porter CB, et al. Matching the heart
	move the threshold	donor and heart transplant recipient. Clues for successful expansion of the donor pool: a multivariable, multiinstitutional report. The Cardiac Transplant Research Database Group.

		The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation. 1994;13(3):353–64.
Novel Technology in Non- Small Cell Lung Cancer	Artificial-Intelligence Derived Algorithms for Intraoperative Molecular Imaging Can Predict Malignancy During Resection of Indeterminate Pulmonary Nodules	Orringer, D., Pandian, B., Niknafs, Y. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng 1, 0027 (2017). https://doi.org/10.1038/s41551-016-0027 Azari F, Kennedy G, Bernstein E, Hadjipanayis C, Vahrmeijer A, Smith B, Rosenthal E, Sumer B, Tian J, Henderson E, Lee A, Nguyen Q, Gibbs S, Pogue B, Orringer D, Charalampaki C, Martin L, Tanyi J, Lee M, Lee JY, Singhal S. Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings. J Biomed Opt. 2021 May;26(5):050901. doi: 10.1117/1.JBO.26.5.050901. PMID: 34002555; PMCID: PMC8126806.
Novel Technology in Non- Small Cell Lung Cancer	Can Artificial Intelligence- Powered Endobronchial Elastography Predict Nodal Metastasis in Lung Cancer? A Pilot Study	Chen, YF. et al. Endobronchial Ultrasound Elastography Differentiates Intrathoracic Lymph Nodes: A Meta-Analysis. Ann. Thorac. Surg. 106, 1251–1257 (2018). Korrungruang, P. & Boonsarngsuk, V. Diagnostic value of endobronchial ultrasound elastography for the differentiation of benign and malignant intrathoracic lymph nodes. Respirology 22, 972–977 (2017)
Novel Technology in Non- Small Cell Lung Cancer	Essential Surgical Plan Modifications for Lung Segmentectomy After Preoperative Virtual Reality Planning Based on Artificial Intelligence	 Sadeghi AH, Maat APWM, Taverne YJHJ, Cornelissen R, Dingemans AC, Bogers AJJC, Mahtab EAF. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021 Mar 16;7:309-321. doi: 10.1016/j.xjtc.2021.03.016. PMID: 34318279; PMCID: PMC8312141. Sadeghi AH, Mathari SE, Abjigitova D, Maat APWM, Taverne YJHJ, Bogers AJJC, Mahtab EAF. Current and Future Applications of Virtual, Augmented, and Mixed Reality in Cardiothoracic Surgery. Ann Thorac Surg. 2020 Dec 18:S0003-4975(20)32127-5. doi: 10.1016/j.athoracsur.2020.11.030. Epub ahead of print. PMID: 33347848.
Novel Technology in Non- Small Cell Lung Cancer	Glycoprotein Receptor CEACAM5-Targeted Intraoperative Molecular Imaging Tracer Can Accurately Target Non- Small Cell Lung Cancers In- Vitro	Gutowski et al. SGM-101: An innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg Oncol. 2017 Jun;26(2):153-162. doi: 10.1016/j.suronc.2017.03.002. Epub 2017 Mar 9. PMID: 28577721. Boogerd et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose- escalation pilot study,The Lancet Gastroenterology & Hepatology,Volume 3, Issue 3,2018,Pages 181-191,
Novel Technology in Non- Small Cell Lung Cancer	Improving Lung Cancer Diagnosis with CT Radiomics and Serum Histoplasmosis Testing	Shipe ME, et al. Validation of Histoplasmosis Enzyme Immunoassay to Evaluate Suspicious Lung Nodules. Ann Thorac Surg. 2021 Feb;111(2):416-420. Liu Y, et al. Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules. Clin Cancer Res. 2017 Mar 15;23(6):1442-1449.
The World of Wires: Transcatheter Technologies	1-year Outcomes after Transcatheter Mitral Valve Implantation:Results from the global CHOICE-MI registry	 Ben-Ali et al. Transcatheter Mitral Valve Implantation Systematic Review: Focus on Transseptal Approach and Mitral Annulus Calcification.Curr Cardiol Rep. 2021 Mar 9;23(4):37. Maisano F et al. The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J 2015;36:1651–9
The World of Wires: Transcatheter Technologies	Cardiac Reoperations in Patients with Transcatheter Aortic Bioprosthesis	Brescia AA, Deeb GM, Sang SLW, Tanaka D, Grossman PM, Sukul D, He C, Theurer PF, Clark M, Shannon FL, Chetcuti SJ, Fukuhara S; Michigan Society of Thoracic and Cardiovascular Surgeons and the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. Surgical Explantation of Transcatheter Aortic Valve Bioprostheses: A Statewide Experience. Circ Cardiovasc Interv. 2021 Apr;14(4):e009927. Fukuhara S, Brescia AA, Deeb GM. Surgical Explantation of Transcatheter Aortic Bioprostheses: An Analysis From the Society of Thoracic Surgeons Database. Circulation. 2020 Dec 8;142(23):2285-2287.
The World of Wires: Transcatheter Technologies	Transcatheter Mitral Valve- in-Valve vs. Reoperative Mitral Valve Replacement	 Simonato M, Whisenant B, Ribeiro HB, et al. Transcatheter Mitral Valve Replacement After Surgical Repair or Replacement: Comprehensive Midterm Evaluation of Valve-in-Valve and Valve-in-Ring Implantation From the VIVID Registry. Circulation. 2021;143(2):104-116. Yoon S-H, Whisenant BK, Bleiziffer S, et al. Transcatheter Mitral Valve Replacement for Degenerated Bioprosthetic Valves and Failed Annuloplasty Rings. J Am Coll Cardiol. 2017;70(9):1121-1131.